0=-16t^2+760

Simple and best practice solution for 0=-16t^2+760 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+760 equation:



0=-16t^2+760
We move all terms to the left:
0-(-16t^2+760)=0
We add all the numbers together, and all the variables
-(-16t^2+760)=0
We get rid of parentheses
16t^2-760=0
a = 16; b = 0; c = -760;
Δ = b2-4ac
Δ = 02-4·16·(-760)
Δ = 48640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48640}=\sqrt{256*190}=\sqrt{256}*\sqrt{190}=16\sqrt{190}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{190}}{2*16}=\frac{0-16\sqrt{190}}{32} =-\frac{16\sqrt{190}}{32} =-\frac{\sqrt{190}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{190}}{2*16}=\frac{0+16\sqrt{190}}{32} =\frac{16\sqrt{190}}{32} =\frac{\sqrt{190}}{2} $

See similar equations:

| 6x-7=-4+7 | | 11+9s=65 | | 10.5x+7=9-4.5x | | 180=11x-18+11x-18+40 | | 8=-8w+3(w-4) | | x+11=221 | | 3x-12=756 | | 13w-14w+15w-12w=-20 | | 12y+8=6y | | 2+5x-1=7x+1–2x | | 27.3=43y | | x=4=19 | | -9j+4j-15j=-20 | | 40/x+5=32/x-1 | | 5r-2=-2r-2 | | s2-8=9 | | 8t^2+32t+24=24 | | 346.72+3.7x=396.82 | | 13-4(5+t)=33 | | 1/2=x/65 | | -13-8x=59 | | -3t+5(t+3)=1 | | -(2x-4)=-9x+25 | | -3x-10=4 | | 10w-9w=13 | | -3m-5-5m=-13 | | 15=-8r-7r | | x÷11=7 | | 58=7x-26 | | -8x-2(7+2x)=-6(2x+5 | | -5=95x | | 21x+12=35x |

Equations solver categories